Math, asked by sayansahu, 1 year ago

prove :
 \sqrt{ \frac{1 - \cos(a) }{1 + \cos(a ) } } = cosec \: a - \cot \: a

THE FIRST ONE TO ANSWER WILL BE MARKED AS BRIANLIEST

PLZZ HELP

Answers

Answered by atul103
1
Hello friend!

here is your Answer
_______________________________

Take LHS
 \sqrt{ { \frac{1 - cos \: a }{1  + cos \: a} }^{} }  = >  \\   \: multiply \: both \: upper \: and \\ bottom \: side \: by \: (1 - cos \: a) \\ \\   =   \sqrt{ \frac{1 - cos \: a } {1 + cos \: a}  \times  \frac{1  -  cos \: a}{1 - cos \: a} }   \\  \\  =  \sqrt{ \frac{(1 - cos \: a) {}^{2} }{1 - cos {}^{2} a} }  \\  \\  =  \sqrt{ \frac{(1 - cos \: a {)}^{2} }{sin {}^{2} a} }  \\  \\  =  \frac{1 - cos \: a}{sin \: a}  \\   \\  = cosec \: a -  \: cot \: a \: \\ proved \\  \\ hope \: its \: helpful
Similar questions