Math, asked by Itzshahil018, 5 days ago

prove that 1-1/2sin2x = \frac{\sin ^{3} x+\cos ^{3} x}{\sin x+\cos x}​

Answers

Answered by mathdude500
17

Question :-

Prove that

\rm \: 1 - \dfrac{1}{2}sin2x = \dfrac{ {sin}^{3}x +  {cos}^{3}x}{sinx + cosx}  \\

\large\underline{\sf{Solution-}}

Consider, RHS

\rm \: \dfrac{ {sin}^{3}x +  {cos}^{3}x}{sinx + cosx}  \\

We know,

\boxed{\rm{  \: {x}^{3}  + {y}^{3}  = (x + y)( {x}^{2} +  {y}^{2} - xy) \: }} \\

So, using this identity, we get

\rm \: =  \:  \: \dfrac{ \cancel{(sinx + cosx)} \: ( {sin}^{2} x +  {cos}^{2} x - sinx \: cosx)}{ \cancel{sinx + cosx}}  \\

\rm \: =  \:  {sin}^{2}x +  {cos}^{2}x - sinx \: cosx \\

We know,

\boxed{\sf{  \:\rm \:  {sin}^{2}x +  {cos}^{2}x = 1 \:  \: }} \\

So, using this identity, we get

\rm \: =  \:  \: 1 - sinx \: cosx \:  \\

can be rewritten as

\rm \: =  \:  \: 1 - \dfrac{1}{2} (2 \: sinx \: cosx )\:  \\

\rm \: =  \:  \: 1 - \dfrac{1}{2} sin2x\:  \\

Hence,

\rm\implies \:\boxed{\rm{  \:1 - \dfrac{1}{2}sin2x = \dfrac{ {sin}^{3}x +  {cos}^{3}x}{sinx + cosx} \: }}  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{\sf{  \:cos2x =  {cos}^{2}x -  {sin}^{2}x \:  \: }} \\

\boxed{\sf{  \:cos2x =  1 - 2 {sin}^{2}x \:  \: }} \\

\boxed{\sf{  \:cos2x =  2 {cos}^{2}x  - 1\:  \: }} \\

\boxed{\sf{  \:cos2x =  \frac{1 -  {tan}^{2} x}{1 +  {tan}^{2} x}  \: }} \\

\boxed{\sf{  \:sin2x =  \frac{2tanx}{1 +  {tan}^{2} x}  \: }} \\

\boxed{\sf{  \:tan2x =  \frac{2tanx}{1 -   {tan}^{2} x}  \: }} \\

\boxed{\sf{  \:sin3x = 3sinx -  {4sin}^{3}x \: }} \\

\boxed{\sf{  \:cos3x =  {4cos}^{3}x - 3cosx \: }} \\

Answered by LaeeqAhmed
3

 \sf \purple{RHS:}

\frac{\sin ^{3} x+\cos ^{3} x}{\sin x+\cos x}

 \blue{ \boxed{ {a}^{3}  +  {b}^{3}  = (a + b)(  {a}^{2} -ab  + {b}^{2}  )}}

 \implies\frac{ \cancel{( \sin x +  \cos x)}(\sin ^{2} x+\cos ^{2} x -  \sin x \cdot  \cos x)}{ \cancel{\sin x+\cos x}}

 \implies\sin ^{2} x+\cos ^{2} x -  \sin x \cdot  \cos x

 \blue{ \boxed{ \sin ^{2} x +  \cos ^{2}  = 1}}

 \implies1-  \frac{1}{2} ( 2\sin x \cdot  \cos x)

 \blue{ \boxed{2 \sin(x) \cos(x)  =  \sin(2x)  }}

 \implies1-  \frac{1}{2} \sin 2x

 \orange{ \sf since \:  \red{LHS=RHS}}

 \sf \color{grey}{hence \: proved}

HOPE IT HELPS!!

Similar questions