Math, asked by siya2354, 3 months ago

prove that 1/A+B+X=1/A+1/B+1/X​

Answers

Answered by naveen200605
2

 \frac{1}{a + b + x}  =  \frac{1}{a}  +  \frac{1}{b}  +  \frac{1}{x}

 \frac{1}{a + b + x}  -  \frac{1}{x}  =  \frac{1}{a}  +  \frac{1}{b}

 \frac{x - a - b - x}{ax + bx + x {}^{2} }  =  \frac{b + a}{ab}

 \frac{ - a - b}{x {}^{2} + ax + bx }  =  \frac{a + b}{ab}

 - (a + b)(ab) = (a + b)(x {}^{2}  + ax + bx)

 \frac{ - (a + b)(ab)}{a + b}  = x {}^{2}  + ax + bx

 - ab = x {}^{2}  + ax + bx \\ x {}^{2}  + (a + b)x + ab = 0 \\ x {}^{2}  + ax + bx + ab = 0

x(x + a) \:  \: b(x + a) = 0 \\ (x + b) \:  \: (x + a) = 0 \\ x =  - b \\ x =  - a

Similar questions