Math, asked by singhquitaryan, 1 year ago

prove that 1 + cos theta upon 1 minus cos theta is equal to cosec theta + cot theta ka whole square​

Answers

Answered by Anonymous
21

Step-by-step explanation:

1+cosx/1-cosx

on rationalization

we get

1+cosx/1-cosx×1+cosx/1+cosx=

1+cos^2x+2cosx/1-cos^2x

=1+cos^2x+2cosx/sin^2x

=cosec^2x+cot^2x+2cosecxcotx (on separating)

=(cosecx+cotx)^2

hence proved


Anonymous: flw me
Answered by FelisFelis
21

\dfrac{1+\cos\theta}{1-\cos\theta}=(\csc\theta+cot\theta)^2 Proved.

Step-by-step explanation:

Consider the provided expression.

\dfrac{1+\cos\theta}{1-\cos\theta}=(\csc\theta+cot\theta)^2

Consider the RHS (\csc\theta+\cot\theta)^2

=(\dfrac{1}{\sin\theta}+\dfrac{\cos\theta}{\sin\theta})^2

=(\frac{1+\cos\theta}{\sin\theta})^2

=\frac{(1+\cos\theta)^2}{\sin^2\theta}

=\frac{(1+\cos\theta)^2}{1-\cos^2\theta}

=\frac{(1+\cos\theta)^2}{(1-\cos\theta)(1+\cos\theta)}

=\frac{1+\cos\theta}{1-\cos\theta}

LHS=RHS

Hence proved

#Learn more

Prove this trigonometric identities

https://brainly.in/question/2708138

Similar questions