Prove that (1 + cot θ - cosec θ)(1 + tan θ + sec θ) = 2
Answers
Answered by
3
HELLO DEAR,
(1 + cotθ - cosecθ)(1 + tanθ + secθ)
=> (1 + cosθ/sinθ - 1/sinθ)(1 + sinθ/cosθ + 1/cosθ)
=> {(sinθ + cosθ - 1)/sinθ} {(cosθ + sinθ + 1)/cosθ}
=> {(sinθ + cosθ)² - 1}/sinθcosθ
=> {(sin²θ + cos²θ) + 2sinθcosθ - 1}/{sinθcosθ}
=> {1 + 2sinθcosθ - 1}/{sinθcosθ}
=> 2sinθcosθ/sinθcosθ
=> 2
hence, (1 + cot θ - cosec θ)(1 + tan θ + sec θ) = 2
I HOPE IT'S HELP YOU DEAR,
THANKS
(1 + cotθ - cosecθ)(1 + tanθ + secθ)
=> (1 + cosθ/sinθ - 1/sinθ)(1 + sinθ/cosθ + 1/cosθ)
=> {(sinθ + cosθ - 1)/sinθ} {(cosθ + sinθ + 1)/cosθ}
=> {(sinθ + cosθ)² - 1}/sinθcosθ
=> {(sin²θ + cos²θ) + 2sinθcosθ - 1}/{sinθcosθ}
=> {1 + 2sinθcosθ - 1}/{sinθcosθ}
=> 2sinθcosθ/sinθcosθ
=> 2
hence, (1 + cot θ - cosec θ)(1 + tan θ + sec θ) = 2
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions