Math, asked by satishnaraine, 1 year ago

prove that:-

√[(1+sinx)/(1+sinx)]+√[(1-sinx)/(1+sinx)] = 2secx.

Answers

Answered by Anonymous
83

 \huge \bf{HEY \:  FRIENDS!!}


---------------------------------------------------



 \huge \bf \underline{Here \:  is \:  your  \: answer↓}

⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇


 \huge \boxed{Prove \:  \:  that:-)}

 \bf =  >  \sqrt{ \frac{1 +  \sin(x) }{1 -  \sin(x) } }  +  \sqrt{ \frac{1 -  \sin(x) }{1 +  \sin(x) } }  = 2 \sec(x) .


 \huge \boxed{Solving \:  LHS:-)}


 \bf =  \sqrt{ \frac{1 +  \sin(x) }{1 -  \sin(x) } }  +  \sqrt{ \frac{1 -  \sin(x) }{1 +  \sin(x) } } .


 \bf \:  =  \frac{ \sqrt{1 +  \sin(x) } }{ \sqrt{1 -  \sin(x) } }  +  \frac{ \sqrt{1 -  \sin(x) } }{ \sqrt{1 +  \sin(x) } } .


 \bf =  \frac{1 +  \sin(x) + 1 -  \sin(x)  }{ \sqrt{(1 -  \sin(x))(1 +  \sin(x)) } } .


 \bf =  \frac{2}{ \sqrt{(1 -  { \sin }^{2}(x) } } .


 \bf =  \frac{2}{ \sqrt{ { \cos }^{2}(x) } } .


 \bf =  \frac{2}{ \cos(x) } .


 \bf = 2 \sec(x) .


 \huge \boxed{LHS = RHS.}


✅✅ Hence, it is proved✔✔.



 \huge \boxed{THANKS}


 \huge \bf \underline{Hope \:  it \:  is \:  helpful  \: for  \: you}


satishnaraine: superb answer
Anonymous: osm answer Sir
Anonymous: thanks a lot u both
Anonymous: my pleasure sir
Anonymous: it's ok
Anonymous: thanks
Answered by Anonymous
8

Answer:

√1 +sin/1-sin× 1+sin /1+sin x +√1-sin/1+sin × 1-sin/1-sin

1+sin/cos + 1-sin/cos

2/cos x = 2sec x

Similar questions