Math, asked by nisrathunnisa987, 10 months ago

Prove that
1/tanA+cotA=cosAsinA

Answers

Answered by Anonymous
3

To Prove:

  •  \frac{1}{  \tan(</strong><strong>A</strong><strong>)  +  \cot(</strong><strong>A</strong><strong>)  }   =  \cos(</strong><strong>A</strong><strong>)  \sin( </strong><strong>A</strong><strong> )

Proof:

We have ,

L.H.S =  \frac{1}{ \tan( A )  +  \cot( A ) }

But,

we know that,

 \tan( A)  =  \frac{ \sin( A ) }{ \cos( A ) }  \\  \\ and \\  \\  \cot( A )  =  \frac{ \cos( A ) }{ \sin( A ) }

Therefore,

pUtting the values,

we get,

 =  \frac{1}{ \frac{ \sin( A ) }{ \cos( A ) }   +  \frac{ \cos( A ) }{ \sin( A ) } }  \\  \\  =  \frac{1}{ \frac{ { \sin }^{2} A  +  { \cos }^{2}  A  }{ \sin( A )  \cos( A) } }  \\  \\  =  \frac{ \sin( A )  \cos( A ) }{ { \sin }^{2} A  +  { \cos}^{2} A  }

But,

we know that,

 { \sin }^{2}  \alpha  +  { \cos }^{2}  \alpha  = 1

Therefore,

putting the values,

we get,

 =  \frac{ \sin( A) \cos( A )  }{1}  \\  \\  =  \sin( A )  \cos( A ) =R.H.S

Thus,

L.H.S = R.H.S

Hence, Proved

Similar questions