Prove that
[(3+2i)/(2-5i)+(3-2i)/(2+5i)] is rational
Answers
Answer:
(3+2i) (2+5i) + (3-2i) (2-5i)
(2-5i) (2?+5i)
6+15i +4i +10i + 6-15i -4i + 10i
(2) -(5i)
6+6 - 10 - 10 /4- 25i =-8/4+25 = -8/29
Answer:
Rational expression of the given value is = -8/29 .
Step-by-step explanation:
Determine the proving of the rational expression.
(3 + 2i)/(2 - 5i) + (3 - 2i)/(2 + 5i) =
((3 + 2i)(2 + 5i) + (3 - 2i)(2 - 5i))/((2 - 5i)(2 + 5i))
Therefore a ^ 2 - b ^ 2 = (a + b)(a - b)
= (6 + 15i + 4i + 10i ^ 2 + 6 - 15i - 4i + 10i ^ 2)/(2 ^ 2 - (5i) ^ 2) i ^ 2
= - 1
=(6 + 15i + 4i + 10(- 1) + 6 - 15i - 4i + 10(- 1))/(4 - 25(- 1))
=(6 + 19i - 10 + 6 - 19i - 10)/(4 + 25)
=(12 - 20)/29 =- 8/29
Hence, the rational expression of the given value is = -8/29 .
#SPJ3
Q1.Complex numbers sums and solutions
https://brainly.in/question/202097
Q2Example of complex number
https://brainly.in/question/2295973