Prove that
4 sin 15°sin 75º = √2 (cos 105° + sin 75°)
Answers
Answered by
3
Answer:
Step-by-step explanation:
cos105=cos(90+15)=-sin15
sin75=sin(90-15)=cos15
sin15=sin(45-30)=sin45cos30-cos45sin30
=(sqrt(3)/2sqrt(2))-(1/2sqrt(2))
=sqrt(3)-1/2sqrt(2)
sin75=sin(30+45)=sin30cos45+cos30sin45=(1/2sqrt(2))+(sqrt(3)/2sqrt(2))
=sqrt(3)+1/2sqrt(2)
LHS:
4sin15sin75=4*(sqrt(3)-1))(sqrt(3)+1)/8=3-2/2=1/2
RHS:
sqrt(2)((-(sqrt(3))+1/2sqrt(2))+(sqrt(3)+1/2sqrt(2))
=(sqrt(2)/2sqrt(2))
=1/2
LHS=RHS
Similar questions