Math, asked by gudiapari646, 11 months ago

Prove that √6+√2 is irrational no.

Answers

Answered by Anonymous
18

AnswEr :

\normalsize\sf\ Let \: \red{\sqrt{6} + \sqrt{2} } \: be \: a \: rational \: number

\normalsize\sf\ As, \: we \: know \: every \: rational \: number \: is \: in \: form \: of \: \blue{\frac{p}{q} }

\normalsize\ : \implies\sf\red{\sqrt{2} + \sqrt{6} } = \blue{\frac{p}{q} }

\:\:\:\:\:\:\normalsize\sf\ [a \: and \: b \: are \: co- prime \: and \: b ≠ 0]

\:\:\:\:\underline{\dag\:\textsf{Squaring \: both \: sides}}

\normalsize\ : \implies\sf\ [\sqrt{6} + \sqrt{2}]^2 = [\frac{p}{q}]^2 \\ \\ \normalsize\ : \implies\sf\ [6 + 2 + 2\sqrt{12}] = \frac{p^2}{q^2} \\ \\ \normalsize\ : \implies\sf\ 8 + 2\sqrt1{12} = \frac{p^2}{q^2} \\ \\ \normalsize\ : \implies\sf\ 2\sqrt{12} = \frac{p^2}{q^2} - 8 \\ \\ \normalsize\ : \implies\sf\ 2\sqrt{12} = \frac{p^2 - 8q^2}{q^2} \\ \\ \normalsize\ : \implies\sf\ \sqrt{12} = \frac{p^2 - 8q^2}{2q^2}

\underline{\dag\:\textsf{Here, \: a \: and \: b \: are \: integers}}

\normalsize\ : \implies\sf\frac{p^2 - 8q^2}{2q^2} = Rational \: number ≠ \sqrt{12}

\normalsize\sf\ \sqrt{12} \: is \: equal \: to \: a \: rational \: number \: but \: it \: contradicts

\normalsize\sf\ that \: \red{\sqrt{12}} \: is \: \red{\sqrt{irrational}}

\normalsize\sf\ This \: show \: that \: our \: assumption \: is \: wrong

\normalsize\therefore\sf\ Hence, \: \sqrt{6} + \sqrt{2} \: is \: irrational

Answered by rs3855051
1

Answer:

Hey

here is your ans

i hope you are satisfied with my ans

Attachments:
Similar questions