Prove that 8 sin⁴ θ = 3 - 4 cos 2θ + cos 4θ
Answers
Question : -
Prove that 8 sin⁴ x = 3-4 cos 2x + cos 4x
ANSWER
Given : -
8 sin⁴ x = 3-4 cos 2x + cos 4x
Required to prove : -
- LHS = RHS
Proof : -
Before solving this question we need to derive some formulae so, let's derive them quickly !
Let's find the value of cos 2x
Using the formula;
cos (x+y) = cos x cos y - sin x sin y
This implies;
Here,
- x = x
- y = x
cos (x+x)
cos 2x =
cos x cos x - sin x sin x
cos²x - sin² x
we know that;
- sin² x + cos² x = 1
- sin² x + cos² x = 1 => cos² x = 1 - sin² x
(1-sin² x) - sin² x
1 - sin² x - sin² x
1 - 2sin² x
Hence,
- cos 2x = 1 - 2sin² x
Similarly,
Using the formula;
sin (x+y) = sin x cos y + sin y cos x
This implies;
Here,
- x = x
- y = x
sin (x+x)
sin 2x =
sin x cos x + sin x cos x
2 sin x cos x
Hence,
- sin 2x = 2 sin x cos x
Now,
Let's find the value of cos 4x
cos (2x+2x)
cos 4x =
cos 2x cos 2x - sin 2x sin 2x
(1 - 2sin² x)(1 - 2sin² x) - (2 sin x cos x)(2 sin x cos x)
(1 - 2sin² x)² - (2 sin x cos x)²
Using the identity;
- (a-b)² = a² + b² - 2ab
Here,
- a= 1
- b = 2sin² x
(1)²+(2sin² x)²-2(1)(2sin² x) - 4 sin² x cos² x
1 + 4sin⁴ x - 4 sin² x - 4 sin² x cos² x
Hence
- cos 4x = 1+4sin⁴ x - 4sin² x - 4 sin² x cos² x
Now,
Let's come back to solve this question !
Consider the RHS part
3 - 4 cos 2x + cos 4x
Substituting the values of cos 2x & cos 4x
3 - 4 (1-2sin² x) + (1+4sin⁴ x - 4sin² x - 4 sin² x cos² x)
3 - 4 + 8sin² x + 1 + 4sin⁴ x - 4sin² x - 4 sin² x (1 - sin² x)
3 - 4 + 8sin² x + 1 + 4sin⁴ x - 4 sin² x - 4 sin² x + 4 sin⁴ x
4 - 4 + 8 sin² x + 4 sin² x - 4 sin² x - 4 sin² x + 4 sin⁴ x
8 sin² x + 4 sin² x - 4 sin² x - 4 sin² x + 4 sin⁴ x
8 sin² x - 8 sin² x + 8 sin⁴ x
Cancelling 8 sin² x on both sides
8 sin⁴ x
LHS = RHS
Hence Proved !
Answer:
hope it was helpful for more qualified answers please follow me
written by#sypraveen