Prove that a^2Sin(B-C)+b^2Sin(C-A)+c^2Sin(A-B)=0
Answers
{ correcting the question }
Before we solve this problem, we must know some formulae:
a/sinA = b/sinB = c/sinC ..... (1)
cosA = (b² + c² - a²)/(2bc)
cosB = (c² + a² - b²)/(2ca)
cosC = (a² + b² - c²)/(2ab)
Proof:
From (1), we write
a/sinA = b/sinB = c/sinC = k (≠ 0)
Then sinA = a/k, sinB = b/k, sinC = c/k
L.H.S. = a² sin(B - C)/(sinB + sinC) + b² sin(C - A)/(sinC + sinA) + c² sin(A - B)/(sinA + sinB)
= a² (sinB cosC - cosB sinC)/(sinB + sinC)
+ b² (sinC cosA - cosC sinA)/(sinC + sinA)
+ c² (sinA cosB - cosA sinB)/(sinA + sinB)
= a² [{(b/k) . (a² + b² - c²)/(2ab)} - {(c² + a² - b²)/(2ca) . (c/k)}]/(b/k + c/k)
+ b² [{(c/k) . (b² + c² - a²)/(2bc)} - {(a² + b² - a²)/(2ab) . (a/k)}]/(c/k + a/k)
+ c² [{(a/k) . (c² + a² - b²)/(2ca)} - {(b² + c² - a²)/(2bc) . (b/k)}]/(a/k + b/k)
= a/(2k) * (a² + b² - c² - c² - a² + b²) * k/(b + c)
+ b/(2k) * (b² + c² - a² - a² - b² + c²) * k/(c + a)
+ c/(2k) * (c² + a² - b² - b² - c² + a²) * k/(a + b)
= {a/(b + c) * (b² - c²)} + {b/(c + a) * (c² - a²)} + {c/(a + b) * (a² - b²)}
= a (b - c) + b (c - a) + c (a - b)
= ab - ca + bc - ab + ca - bc
= 0 = R.H.S.
Hence proved.
Answer:
0
Step-by-step explanation:
this answer is way easier than the other answers