Prove that a(n) = S(n)-S(n-1)
Answers
Answer:
Step-by-step explanation:
S_n = a_1 + a_2 +.... + a_n
S_{n-1} = a_1 + a_2 +.....+a_{n-1}
S_n - S_{n-1} = ( a_1 + a_2 +....+ a_{n-1} + a_n ) - (a_1 + a_2 +....+ a_{n-1})= a_n, {since all the other terms cancel}.
Pl mark as brainliest
The image attached has an easy proof
the below one is a little bit detailed
choose the one which u feel comfortable my dear friend ✌✌
an = a + (n-1)d
Sn = (n/2)(a + a + (n-1)d)
Sn-1 = {(n-1)/2}(a + a + (n-2)d)
Sn - Sn-1 = (n/2)(a + a + (n-1)d) - [ {(n-1)/2}(a + a + (n-2)d)]
Sn - Sn-1 = (n/2)(2a + (n-1)d) - [ {(n-1)/2}(2a + (n-2)d)]
Sn - Sn-1 = na + n(n-1)d/2 - [ na - a +(n-1)(n-2)d/2]
Cancelling na and splitting(n-1)(n-2)
Sn - Sn-1 = n(n-1)d/2 - [ - a +n(n-1)d/2 -2(n-1)d/2]
Cancelling n(n-1)d/2
Sn - Sn-1 = - [ - a -2(n-1)d/2]
Sn - Sn-1 = a + (n-1)d
Sn - Sn-1 = an