Math, asked by rameshr9709, 7 months ago

prove that alpha+beta=-b/a​

Attachments:

Answers

Answered by Bidikha
5

Given -

 \alpha  =  \frac{ - b +  \sqrt{ {b}^{2}  - 4ac} }{2a}  \:  \: and \:  \beta  =  \frac{ - b -  \sqrt{ {b}^{2}  - 4ac} }{2a}

To prove

1) \alpha  +  \beta  =  \frac{ - b}{a}

2) \alpha \beta  =  \frac{c}{a}

Proof -

 1)  = \alpha  +  \beta

Now putting the values,

 =  \frac{ - b +  \sqrt{ {b}^{2}  - 4ac} }{2a}  +  \frac{ - b -  \sqrt{ {b}^{2}  - 4ac} }{2a}

 =  \frac{ - b +  \sqrt{ {b}^{2} - 4ac }  + ( - b -  \sqrt{ {b}^{2} - 4ac }  }{2a}

 =  \frac{ - b +  \sqrt{ {b}^{2}  - 4ac}  - b -  \sqrt{ {b}^{2}  - 4ac} }{2a}

 =  \frac{ - 2b}{2a}

 =  \frac{ - b}{a}

Proved

2) =  \alpha  \beta

 =  \frac{ - b +  \sqrt{ {b}^{2} - 4ac } }{2a}  \times  \frac{ - b -  \sqrt{ {b}^{2} - 4ac } }{2a}

 =  \frac{ {( - b)}^{2} -  {( \sqrt{ {b}^{2}  - 4ac} )}^{2}  }{4a {}^{2} }

 =  \frac{ {b}^{2} - ( {b}^{2}   - 4ac)}{4a {}^{2} }

 =  \frac{ {b}^{2}  -  {b}^{2} + 4ac }{ {4a}^{2} }

 =  \frac{4ac}{4 {a}^{2} }

 =  \frac{c}{a}

Hence Proved

Answered by Anonymous
0

Step-by-step explanation:

hope it helped you

please give me like

Attachments:
Similar questions