Math, asked by Arjjun, 1 year ago

prove that. Am lil bit confuse because i dont understand trigo properly.

Attachments:

Answers

Answered by gaurav2013c
5
 \sqrt{ \frac{1 + \cos( \alpha ) }{1 - \cos( \alpha ) } } \\ \\ = \sqrt{ \frac{(1 + \cos( \alpha ) )\: \: \: (1 + \cos( \alpha ) ) }{(1 - \cos( \alpha ) )(1 + \cos( \alpha )) } } \\ \\ = \sqrt{ \frac{ {(1 + \cos( \alpha )) }^{2} }{ {1 - \cos( \alpha ) }^{2} } } \\ \\ = \sqrt{ \frac{ {(1 + \cos( \alpha )) }^{2} }{ { \sin( \alpha ) }^{2} } } \\ \\ = \frac{1 + \cos( \alpha ) }{ \sin( \alpha ) } \\ \\ = \frac{1}{ \sin( \alpha ) } + \frac{ \cos( \alpha ) }{ \sin( \alpha ) } \\ \\ = \cosec( \alpha ) + \cot( \alpha )

Arjjun: yrr
Arjjun: dobara bhej doge....ek to yrr m nya hu is app pr
Arjjun: upr se dek hi ni paya m pura sol
Answered by siddhartharao77
5
 Given: \sqrt{ \frac{1+cosA}{1-cosA} }

 \sqrt{ \frac{1+cosA}{1-cosA} *  \frac{1+cosA}{1+cosA}  }

 \sqrt{ \frac{(1+cosA)^2}{1-cos^2A} }

 \frac{1+cosA}{sinA}

 \frac{1}{sinA} +  \frac{cosA}{sinA}

cosecA + cotA.


Hope this helps!

siddhartharao77: :-)
Similar questions