Math, asked by avnishyadav1835, 1 year ago

prove that area of an equilateral triangle is root 3/4 a2 , where a is thee side of the triangle

Answers

Answered by khushihargunani
0
Ar equilateral ▲ =root 3/4 side^2
Attachments:
Answered by BrainlyQueen01
12
Solution :

_______________________

Derivation of Area of an equilateral triangle ;

Let ABC be an equilateral triangle with sides 'a'. Now, draw AD perpendicular to BC.

Here, we have ΔABD = ΔADC.

We will find area of ΔABD using pythagorean theorem, according to which, the square of hypotenuse is equal to the sum of the squares of the other two sides.

Here, we have ;

 \sf a {}^{2} = h {}^{2} + (\frac{a}{2} ) {}^{2} \\ \\ \sf h {}^{2} = a {}^{2} - \frac{a {}^{2} }{4} \\ \\ \sf h {}^{2} = \frac{3a {}^{2} }{4} \\ \\ \sf h = \frac{ \sqrt{3} }{2} a
Now, we get the height ;

 \sf area \: of \: \Delta = \frac{1}{2} \times base \times height \\ \\ \sf area \: of \: \Delta = \frac{1}{2} \times a \times \frac{ \sqrt{3} }{2} a \\ \\ \sf area \: of \: \Delta = \frac{ \sqrt{3} }{4} a {}^{2}

Hence, area of equilateral triangle is

\sf area \: of \: \Delta = \frac{ \sqrt{3} }{4} a {}^{2}
Similar questions