Math, asked by Abantisahoo, 1 year ago

prove that (AUB )'=A'nB'​

Answers

Answered by MaheswariS
31

\textbf{Concept:}

x\in\,A\;\implies\;x\notin\,A

x\notin\,A\;\implies\;x\in\,A

\text{To prove: $\bf(A{\cup}B)'=A'{\cap}B'$}

\text{Let\,$x\in(A{\cup}B)'$}

\iff\;x\notin\,A{\cup}B

\iff\;x\notin\,A\;\&\;x\notin\,B

\iff\;x\in\,A'\;\&\;x\in\,B'

\iff\;x\in\,A'{\cap}B'

\therefore\boxed{\bf(A{\cup}B)'=A'{\cap}B'}

Answered by codiepienagoya
36

Given:

\bold{(A \cup  B)'= A'\cap B' }

To find:

proving

Solution:

\bold{(A \cup  B)'= A'\cap B' }

To solve the above equation we apply the De Morgan’s theorem:

Let

x = (A \cup B)' \\y = A' \cap B'\\

Let z be an arbitrary element of x then  z ∈ x ⇒ z ∈ (A U B)'

\Rightarrow z \notin (A \cup B)\\\\\Rightarrow z \notin  A\  \ and \ \ z \notin B\\\\\Rightarrow z \in A' \ \ and \ \ z \in B'\\\\ \Rightarrow z \in A' \cap B'\\\\\Rightarrow z \in y\\\\\therefore, \ \  x \subset  y ....... (i)

Again, let z1 be an arbitrary element of y then z1 ∈ y ⇒ z1 ∈ A' ∩ B'

\Rightarrow z1 \in A' \ \ and \ \ z1 \in B'\\\\\Rightarrow z1\notin A \ \ and \ \ z1 \notin B\\\\\Rightarrow z1 \notin (A \cup B)\\\\\Rightarrow  z1 \in (A \cup B)' \\\\\Rightarrow  z1 \in P\\\\\therefore, Q \subset  P ....(ii)\\\\ \ to \ combine \ (i) \ and \ (ii) \ we \ get;  \ x = y \ we \get \  (A \cup B)' = A' \cap B'\\

Similar questions