Math, asked by TbiaSupreme, 1 year ago

If sin (A − B) = 1/2, cos (A + B) = 1/2, 0° < A + B < 90°, A > B, find A and B.

Answers

Answered by hukam0685
2

Answer:

A = 45°

B= 15°

Step-by-step explanation:

To find A and B

If sin (A − B) = 1/2, cos (A + B) = 1/2, 0° < A + B < 90°, A > B, find A and B.

As we know that

sin \: 30 ^{ \circ}  =  \frac{1}{2}  \\  \\ cos\: 60 ^{ \circ}  =  \frac{1}{2} \\  \\

put the value of 1/2 from above in RHS of the given expressions

sin(A-B) = sin \: 30 ^{ \circ} \\  \\ \implies \: (A-B) = 30^{ \circ} ..eq1 \\  \\  cos(A+B) = cos \: 60 ^{ \circ} \\  \\ \implies \: (A+B) = 60^{ \circ}...eq2 \\  \\

now solve these equations to find the value is A and B

on adding them

2A = 90° \\  \\ A = 45° \\  \\ B = 15° \\  \\

Hope it helps you.

Answered by pulakmath007
6

\displaystyle\huge\red{\underline{\underline{Solution}}}

GIVEN

1. \:  \:  \displaystyle \sf{ \sin ( A - B)  =  \frac{1}{2}  \:   \:  \: and \:  \:  \cos ( A  +  B)  =  \frac{1}{2} \: }

2. \:  \:  \sf{  {0}^{ \circ}  &lt;   A  +  B  &lt;  {90}^{ \circ}}

TO DETERMINE

The value of A & B

CALCULATION

  \displaystyle \sf{ \sin ( A - B)  =  \frac{1}{2} \: }

 \implies \:   \displaystyle \sf{  ( A - B)  =   {30}^{ \circ}  \: } \:  \:  \: .........(1)

Again

 \displaystyle \sf{ \:  \cos ( A  +  B)  =  \frac{1}{2} \: }

 \implies \:   \displaystyle \sf{  ( A  + B)  =   {60}^{ \circ}  \: } \:  \:  \: .........(2)

Adding Equation (1) & Equation (2) we get

  \displaystyle \sf{  2A    =   {90}^{ \circ}  \: } \:  \:  \:

 \implies \:   \displaystyle \sf{  A    =   {45}^{ \circ}  \: } \:  \:  \:

From Equation (1)

  \displaystyle \sf{  B  =  {45}^{ \circ} -  {30}^{ \circ}  \: }

   \implies \: \displaystyle \sf{  B  =  {15}^{ \circ}  \: }

RESULT

 \boxed{ \:  \: \sf{    A  =  {45}^{ \circ}  \:  \: and \:  \: \:  \:   B   =  {15}^{ \circ} \:  \:  \: }}

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Find the value of(1+tan13)(1+tan32)+(1+tan12)(1+tan33)

https://brainly.in/question/23306292

Similar questions