Math, asked by ROHSK, 1 year ago

prove that cos\1-tan +sin\1-cot= sin+cos

Attachments:

Answers

Answered by kuldeep147
188
the answer is given in the picture.
Attachments:
Answered by Raghav1330
10

To Prove:

cos\1-tan + sin\1-cot= sin+cos

Solution :

L.H.S.=

\frac{cosA}{1-tanA}+ \frac{sinA}{1- cotA}   (tanA\frac{sinA}{cosA})\                                                               (cot= \frac{cosA}{sinA)\\}

\frac{cosA}{1-sinA/cosA} + \frac{sinA}{1-cosA/sinA}

\frac{cos^{2}A }{cosA-sinA} + \frac{sin^{2}A }{sinA-cosA}\\\frac{cos^{2}A }{cosA-sinA} - \frac{sin^{2} A}{cosA-sinA}  \\\frac{cos^{2}A-sin^{2}A }{cosA-sinA}(a²-b²= (a+b) (a-b)

\frac{(cosA+sinA)(cosA-sinA)}{(cosA-sinA)}

sinA + cosA = R.H.S

Hence, proved.

Similar questions