Math, asked by gaurishiarora1617, 1 year ago

prove that cos 18 - sin 18 = 2 sin 27

Answers

Answered by priyanshu4710
48
Cos18- Sin18= cos18 - cos72= -2×sin(18+72)/2 × sin (18-72)/2 (using CosC-CosD) = -2 sin45×sin(-27) 2sin45sin27 (sin(-x)=-sinx) =√2×sin27
Answered by parmesanchilliwack
67

Answer:

We have to prove :  cos 18° - sin 18° = √2 sin 27°

L.H.S.

cos 18^{\circ} - sin 18^{\circ}

= cos 18^{\circ} - sin (90 - 72)^{\circ}

= cos 18^{\circ} - cos 72^{\circ}               ( Because, cos x = sin (90 - x ) )

=2 sin\frac{18+72}{2} . sin \frac{72-18}{2}

( Because, cos A - cos B = 2 sin \frac{A+B}{2} . sin \frac{B-A}{2} )

=2 sin \frac{90}{2} . sin \frac{54}{2}

=2\times \frac{1}{\sqrt{2}} . sin 27^{\circ}  ( sin 45° = 1/√2 )

=\sqrt{2} . sin 27^{\circ}

R.H.S.

Hence, proved.

Similar questions