Math, asked by Soham8824, 1 year ago

PROVE THAT : cos(45-A)cos(45-B) -sin(45-A)sin(45-B)=sin(A+B)

Answers

Answered by ujjwalguptax20p8fwe9
32
cos(45-A+45-B). :: cos(A+B)
cos(90-(A+B))
cos(90)cos(A+B)+sin(90)sin(A+B). :: cos(A-B)
0+sin(A+B). :: cos(90)=0,sin(90)=1
sin(A+B)
Answered by vinod04jangid
1

Answer:

Step-by-step explanation:

cos(x+y) =cos x cos y - sin x sin y

cos(45-A)cos(45-B) - sin(45-A)sin(45-B) = cos[(45-A)+(45-B)]

cos(45-A)cos(45-B) - sin(45-A)sin(45-B) = cos[90-(A+B)]  

                                                                  there fore {cos(90-Q)=sinQ}

cos(45-A)cos(45-B) - sin(45-A)sin(45-B) = sin(A+B)

                                                                                 HENCE PROVED  

#SPJ2                                                      

Similar questions