PROVE THAT : cos(45-A)cos(45-B) -sin(45-A)sin(45-B)=sin(A+B)
Answers
Answered by
32
cos(45-A+45-B). :: cos(A+B)
cos(90-(A+B))
cos(90)cos(A+B)+sin(90)sin(A+B). :: cos(A-B)
0+sin(A+B). :: cos(90)=0,sin(90)=1
sin(A+B)
cos(90-(A+B))
cos(90)cos(A+B)+sin(90)sin(A+B). :: cos(A-B)
0+sin(A+B). :: cos(90)=0,sin(90)=1
sin(A+B)
Answered by
1
Answer:
Step-by-step explanation:
cos(x+y) =cos x cos y - sin x sin y
cos(45-A)cos(45-B) - sin(45-A)sin(45-B) = cos[(45-A)+(45-B)]
cos(45-A)cos(45-B) - sin(45-A)sin(45-B) = cos[90-(A+B)]
there fore {cos(90-Q)=sinQ}
cos(45-A)cos(45-B) - sin(45-A)sin(45-B) = sin(A+B)
HENCE PROVED
#SPJ2
Similar questions