Math, asked by pavanganesh4609, 1 year ago

Prove that cos 48° . cos 12° = \frac{3 + \sqrt{5}}{8} .

Answers

Answered by MaheswariS
4

Answer:

\frac{ \sqrt{5}+3}{8}

Step-by-step explanation:

Formula used:


cosA cosB = 1/2[cos(A+B)+cos(A-B)]



cos 48° . cos 12°

=\frac{1}{2}[2cos48\:cos12]

=\frac{1}{2}[cos(48+12)+cos(48-12)]

=\frac{1}{2}[cos60+cos36]

=\frac{1}{2}[\frac{1}{2}+\frac{ \sqrt{5}+1}{4}]

=\frac{1}{2}[\frac{ \sqrt{5}+3}{4}]

=\frac{ \sqrt{5}+3}{8}




Similar questions
Math, 1 year ago