Math, asked by Adishji6111, 1 year ago

Prove that sin^{2}(\alpha\ - \frac{\pi}{4}) + sin^{2}(\alpha\ + \frac{\pi}{12}) - sin^{2}(\alpha\ - \frac{\pi}{12}) = \frac{1}{2} .

Answers

Answered by MaheswariS
0

Answer:

\frac{1}{2}

Step-by-step explanation:

Formula\:used

{sin}^2A-{sin}^2B= sin(A+B).sin(A-B)


{sin}^2(\alpha-\frac{\pi}{4})}+{sin}^2(\alpha+\frac{\pi}{12}})+{sin}^2(\alpha-\frac{\pi}{4}})

={sin}^2(\frac{\pi}{4}}-\alpha})+sin(\alpha+\frac{\pi}{12}+\alpha-\frac{\pi}{12}).sin(\alpha+\frac{\pi}{12}-\alpha+\frac{\pi}{12}).

=\frac{1}{2}[1-cos2(\frac{\pi}{4}}-\alpha})]+sin2\alpha. sin(\frac{\pi}{6})

=\frac{1}{2}[1-cos(\frac{\pi}{2}}-2\alpha})]+sin2\alpha. \frac{1}{2}

=\frac{1}{2}-\frac{1}{2}.sin2\alpha+(\frac{1}{2} )sin2\alpha. \\\\=\frac{1}{2}


Similar questions