Math, asked by JARVISRISHI132, 1 year ago

Prove that cos θ + cos (\frac{2\pi}{3} + θ) + cos (\frac{4\pi}{3} + θ) = 0.

Answers

Answered by MaheswariS
0

Answer:

0

Step-by-step explanation:

Formula used:


cos(A+B) = cosA cosB - sinA sinB


Now


cos∅ + cos(2∏/3 +∅) + cos( 4∏/3 +∅)


= cos∅ + cos2∏/3 cos∅ - sin2∏/3 sin∅

+ cos4∏/3 cos∅ - sin4∏/3 sin∅


= cos∅ + (-½)cos∅ - (√3⁄2) sin∅

+ ( -½)cos∅ - (- √3⁄2) sin∅


= cos∅ + (-½)cos∅ - (√3⁄2) sin∅

+ ( -½)cos∅ +(√3⁄2)sin∅


= cos∅ - cos∅- (√3⁄2) sin∅

+ (√3⁄2)sin∅

= 0


I hope this answer helps you



Similar questions
Math, 1 year ago