Prove that cos θ + cos ( + θ) + cos ( + θ) = 0.
Answers
Answered by
0
Answer:
0
Step-by-step explanation:
Formula used:
cos(A+B) = cosA cosB - sinA sinB
Now
cos∅ + cos(2∏/3 +∅) + cos( 4∏/3 +∅)
= cos∅ + cos2∏/3 cos∅ - sin2∏/3 sin∅
+ cos4∏/3 cos∅ - sin4∏/3 sin∅
= cos∅ + (-½)cos∅ - (√3⁄2) sin∅
+ ( -½)cos∅ - (- √3⁄2) sin∅
= cos∅ + (-½)cos∅ - (√3⁄2) sin∅
+ ( -½)cos∅ +(√3⁄2)sin∅
= cos∅ - cos∅- (√3⁄2) sin∅
+ (√3⁄2)sin∅
= 0
I hope this answer helps you
Similar questions