Math, asked by raghav123477, 10 months ago

Prove that
(cos A+cos 3A+cos 5A +cos 7A)/(sin A+sin 3A+sin 5A+ sin 7A)=cot 4A​

Answers

Answered by ritu5219
3

Step-by-step explanation:proved below in the image

Attachments:
Answered by Anonymous
42

\large{\underline{\mathrm{\red{Question-}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Prove that -

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{\dfrac{CosA\:+\:Cos3A\:+\:Cos5A\:+\:Cos7A}{SinA\:+\:Sin3A\:+\:Sin5A\:+\:Sin7A}\:=\:Cot4A}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large{\underline{\mathrm{\red{Solution-}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

: \implies Taking LHS,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

: \implies \sf{\dfrac{CosA\:+\:Cos3A\:+\:Cos5A\:+\:Cos7A}{SinA\:+\:Sin3A\:+\:Sin5A\:+\:Sin7A}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

: \implies \sf{\dfrac{(CosA\:+\:Cos7A)\:+\:(Cos3A\:+\:Cos5A)}{(SinA\:+\:Sin7A)\:+\:(Sin3A\:+\:Sin5A)}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

: \implies \sf{\dfrac{2Cos4ACos3A+2Cos4ACosA}{2Sin4ACos3A+2Sin4ACosA}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

: \implies \sf{\dfrac{2Cos4A\:\cancel{(Cos3A+CosA)}}{2Sin4A\:\cancel{(Cos3A+CosA)}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

: \implies \sf{\dfrac{2Cos4A}{2Sin4A}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

°° \sf{\dfrac{CosA}{SinA}=CotA}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

: \implies Cot4A

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

: \implies RHS

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Hence proved!

Similar questions