Math, asked by dhivyadharshini23, 1 year ago

prove that cos theta by 1 minus tan theta + sin square theta by sin theta minus cos theta is equal to sin theta + cos theta​

Answers

Answered by thameshwarp9oqwi
3

Answer:

==> L.H.S

==> COS Q ÷ 1 - TAN Q   +      SIN²Q ÷ SINQ-COSQ

===> COSQ ÷ 1 - SIN Q/COS Q + SIN²Q / SIN Q - COS Q

==> COSQ ÷ (COSQ - SINQ)/ COSQ +   SIN²Q/SINQ-COSQ

==> COSQ × COSQ/ (COSQ-SINQ) + SIN²Q / SINQ-COSQ

==> COS²Q / (COSQ-SINQ) + SIN²Q / -(COSQ-SINQ)

==> COS²Q / (COSQ-SINQ) - SIN²Q/(COSQ-SINQ)

==> COS²Q-SIN²Q / (COSQ - SINQ)

==> (COSQ+SINQ) (COSQ-SINQ) / (COSQ-SINQ)

==> (COSQ+SINQ) = R.H.S

Similar questions