prove that cos theta by 1 minus tan theta + sin square theta by sin theta minus cos theta is equal to sin theta + cos theta
Answers
Answered by
3
Answer:
==> L.H.S
==> COS Q ÷ 1 - TAN Q + SIN²Q ÷ SINQ-COSQ
===> COSQ ÷ 1 - SIN Q/COS Q + SIN²Q / SIN Q - COS Q
==> COSQ ÷ (COSQ - SINQ)/ COSQ + SIN²Q/SINQ-COSQ
==> COSQ × COSQ/ (COSQ-SINQ) + SIN²Q / SINQ-COSQ
==> COS²Q / (COSQ-SINQ) + SIN²Q / -(COSQ-SINQ)
==> COS²Q / (COSQ-SINQ) - SIN²Q/(COSQ-SINQ)
==> COS²Q-SIN²Q / (COSQ - SINQ)
==> (COSQ+SINQ) (COSQ-SINQ) / (COSQ-SINQ)
==> (COSQ+SINQ) = R.H.S
Similar questions