prove that cos20.cos40.cos80
Answers
Answered by
1
cos 20 cos 40 cos 80 = 1/ 8
cos 20 cos 40 cos 80 = 2 sin 20 cos 20 cos 40 cos 80 / 2 sin 20 ( Multiplying numerator & denomirator with 2sin 20)
= sin 2 (20) cos 40 cos 80 / 2 sin 20 ( 2 sin a cos a = sin 2 a )
= sin 40 cos 40 cos 80 / 2 sin 20
= 2 sin 40 cos 40 cos 80 / 2 . 2 sin 20 ( Multiplying numerator & denomirator with ' 2 ' )
= sin 2 ( 40 ) cos 80 / 4 sin 20 ( 2 sin a cos a = sin 2a )
= 2 . sin 80 cos 80 / 2 . 4 sin 20 ( Multiplying numerator & denomirator with ' 2 ' )
= sin 2 ( 80 ) / 8 sin 20 ( 2 sin a cos a = sin 2a )
= sin ( 160 ) / 8 sin 20
= sin ( 180 - 20 ) / 8 sin 20
= sin 20 / 8 sin 20
= 1/ 8
Therefore cos 20 cos 40 cos 80 = 1/8.
cos 20 cos 40 cos 80 = 2 sin 20 cos 20 cos 40 cos 80 / 2 sin 20 ( Multiplying numerator & denomirator with 2sin 20)
= sin 2 (20) cos 40 cos 80 / 2 sin 20 ( 2 sin a cos a = sin 2 a )
= sin 40 cos 40 cos 80 / 2 sin 20
= 2 sin 40 cos 40 cos 80 / 2 . 2 sin 20 ( Multiplying numerator & denomirator with ' 2 ' )
= sin 2 ( 40 ) cos 80 / 4 sin 20 ( 2 sin a cos a = sin 2a )
= 2 . sin 80 cos 80 / 2 . 4 sin 20 ( Multiplying numerator & denomirator with ' 2 ' )
= sin 2 ( 80 ) / 8 sin 20 ( 2 sin a cos a = sin 2a )
= sin ( 160 ) / 8 sin 20
= sin ( 180 - 20 ) / 8 sin 20
= sin 20 / 8 sin 20
= 1/ 8
Therefore cos 20 cos 40 cos 80 = 1/8.
Similar questions