Math, asked by ssssDas111, 1 year ago

prove that cos35°+cos85°-sin65°=0 ..
please help me to solve it

Answers

Answered by shanujindal48p68s3s
1
Now we know that
 \cos( \alpha )  +  \cos( \beta )  = 2 \cos( \frac{ \alpha   + \beta }{2} )  \cos(  \frac{ \alpha  -  \beta }{2} )
Now consider this
 \cos(35)  +  \cos(85)  \\  = 2 \cos( \frac{35 + 85}{2} )  \cos( \frac{85 - 35}{2} )  \\  = 2 \cos( \frac{120}{2} )  \cos( \frac{50}{2} )  \\  = 2 \cos(60) \cos(25)   \\  = 2 \times  \frac{1}{2}  \times  \cos(25)  \\  =  \cos(25)  \\  =  \sin(90 - 25)  =  \sin(65)
This gives
 \cos(35)  +  \cos(85)  =   \sin(65)  \\  \cos(35)    + \cos(85)  -  \sin(65)  = 0
Similar questions