Math, asked by Anonymous, 9 months ago

Prove that Cosec²α+Sec²α=Cosec²α×Sec²α​

Answers

Answered by Anonymous
2

Answer:

To prove that,

 { \csc }^{2}  \alpha  +  { \sec }^{2}   \alpha  =  { \csc }^{2}  \alpha  \times  { \sec }^{2}  \alpha

Let's start from Left Hand Side.

Therefore, we will get,

L.H.S =

  { \csc }^{2} \alpha  +   { \sec}^{2}  \alpha  \\  \\  =  \dfrac{1}{ { \sin }^{2} \alpha  } +  \dfrac{1}{ { \cos }^{2} \alpha  }   \\  \\  =  \frac{ { \cos }^{2} \alpha  +  {  \sin }^{2}  \alpha  }{ { \sin }^{2}  \alpha \times   { \cos }^{2} \alpha   }  \\  \\  =  \frac{1}{  { \sin }^{2} \alpha \times  { \cos }^{2}  \alpha  }  \\  \\  =  { \csc}^{2} \alpha  \times  { \sec }^{2}   \alpha

= R.H.S

Thus, L.H.S = R.H.S

Hence, Proved.

Key Concepts :-

  •   \csc \alpha  =  \frac{1}{ \sin( \alpha ) }
  •  \sec( \alpha )  =  \frac{1}{ \cos( \alpha ) }
  •  { \sin }^{2}  \alpha  +  { \cos}^{2}  \alpha  = 1

Similar questions