Math, asked by MartinHembrom, 10 months ago

prove that: cosec4A-2cosec2A+2sec2A-sec4A=cot4A-tan4A​

Answers

Answered by mysticd
6

 LHS = cosec^{4} A - 2cosec^{2} A +2sec^{2} A - sec^{4} A

 = cosec^{2} A ( cosec^{2} A - 2 ) + sec^{2} A ( 2 - sec^{2} A ) \\= cosec^{2} A[ ( cosec^{2} A - 1) - 1 ] + sec^{2} A [ 2 - ( 1 + tan^{2} A )]

 \boxed { \pink { sec^{2} A = 1 + tan^{2} A }}

 = cosec^{2} A[ ( cot^{2} A  - 1 ] + sec^{2} A [ 2 - 1 - tan^{2} A ]

 = (  cot^{2} A + 1 )( cot^{2} A - 1 ) + ( 1 + tan^{2} A ) ( 1 - tan^{2} A )

 = (cot^{2} A )^{2} - 1^{2} + 1^{2} - (sec^{2} A)^{2}

 \boxed { \orange { (a+b)(a-b) = a^{2} - b^{2} }}

 = cot^{4} A - 1 + 1 - tan^{4} A \\= cot^{4} A  - tan^{4} A\\= RHS

Therefore.,

 \red {cosec^{4} A - 2cosec^{2} A +2sec^{2} A - sec^{4} A  }

 \green {= cot^{4} A  - tan^{4} A}

•••♪

Answered by ITzBrainlyGuy
0

Answer:

 { \csc(a) }^{4}  -  {2 \csc(a) }^{2} + 2 { \sec(a) }^{2}   -  { \sec(a) }^{4}  =  { \cot(a) }^{4}  -  { \tan(a) }^{4}

taking LHS

 { \csc(a) }^{4}  - 2 { \csc(a) }^{2} + 2 { \sec(a) }^{2}   -  { \sec(a) }^{4}

 =  { \csc(a) }^{2} ( { \csc(a) }^{2} - 2)  +  { \sec(a) }^{2} (2 -  { \sec(a) }^{2} )

[tex]{\csc(a)}^{2}({\csc(a)}^{2}-2)

+{\sec(a)}^{2}(2-{\sec(a)}^{2})[tex]

[tex]{\csc(a)}^{2}({\csc(a)}^{2}-1-1})+{\sec(a)}^{2}(1+1-{\sec(a)}^{2})[tex]

[tex]{\csc(a)^{2}({\cot(a)}^{2}-1})+{\sec(a)}^{2}(1+{\tan(a)}^{2})[tex]

Similar questions