Math, asked by PragyaTbia, 1 year ago

Prove that (cosh x - sinh x)ⁿ = cosh(nx) - sinh(nx), for any n ∈ R.

Answers

Answered by abhi178
33
we know,

coshx=\frac{e^x+e^{-x}}{2} and sinhx=\frac{e^x-e^{-x}}{2}

LHS = (coshx-sinhx)^n

=\left[\frac{e^x+e^{-x}}{2}-\frac{e^x-e^{-x}}{2}\right]^n\\\\=\left[\frac{e^x+e^{-x}-e^{x}+e^{-x}}{2}\right]^n\\\\=\left[\frac{2e^{-x}}{2}\right]^n\\\\=e^{-nx}

now, RHS = cosh(nx)-sinh(nx)

=\left[\frac{e^{nx}+e^{-nx}}{2}-\frac{e^{nx}-e^{-nx}}{2}\right]\\\\=\left[\frac{e^{nx}+e^{-nx}-e^{nx}+e^{-nx}}{2}\right]\\\\=\left[\frac{2e^{-nx}}{2}\right]\\\\=e^{-nx}

hence, LHS = RHS
Answered by rohitkumargupta
14
HELLO DEAR,

we know,
\bold{coshx = \frac{e^x + e^{-x}}{2} \;\; , sinhx = \frac{e^{x} - e^{-x}}{2}}

now,

LHS = (coshx - sinhx)^n

\bold{\implies[\frac{e^x + e^{-x}}{2} - \frac{e^x - e^{-x}}{2}]^n}

\bold{\implies [\frac{e^x + e^{-x} - e^{x} + e^{-x}}{2}]^n}

\bold{\implies \frac{2e^{-nx}}{2}}

\bold{\implies \frac{1}{e^{nx}}}

RHS = cosh(nx) - sinh(nx)

\bold{\implies [\frac{e^{nx} + e^{-nx}}{2} - \frac{e^{nx} - e^{-nx}}{2}]}

\bold{\implies [\frac{e^{nx} + e^{-nx} - e^{nx} + e^{-nx}}{2}]}

\bold{\implies [\frac{2e^{-nx}}{2}]}

\bold{\implies \frac{1}{e^{nx}}}

hence, LHS = RHS

I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions
Math, 1 year ago