Math, asked by PragyaTbia, 1 year ago

Prove that  tanh ( x - y) = \frac{tanh\ x\ -\ tanh\ y}{1\ -\ tanh\ x\ .\ tanh\ y}.

Answers

Answered by somi173
10

Hi.

The given function is a Hyperbolic Trigonometric Function.

I have used the formulas of Hyperbolic Trigonometric Functions to solve the question.

I have proved it using simple laws of mathematics.

I have provided its proof in detail in the ATTACHMENT.

Kindly see the attachment for detailed answer.

I hope it will help You.

Attachments:
Answered by rohitkumargupta
10
HELLO DEAR,

we know:- tanha = \frac{e^a - e^{-a}}{e^a + e^{-a}}

now, \frac{tanh\ x\ -\ tanh\ y}{1\ -\ tanh\ x\ .\ tanh\ y}

\bold{\implies \frac{(e^x - e^{-x})/(e^x + e^{-x}) - (e^y - e^{-y})/(e^y + e^{-y})}{1 - (e^x - e^{-x})/(e^x + e^{-x}) \times (e^y - e^{-y})/(e^y + e^{-y})}}

\bold{\implies \frac{e^{x + y} + e^{x - y} - e^{-x + y} - e^{-x - y} - e^{x + y} + e^{x - y} - e^{-x + y} + e^{-x - y}}{e^{x + y} + e^{x - y} + e^{y - x} + e^{-x - y} - e^{x + y} + e^{x - y} + e^{y - x} - e^{-x - y}}}

\implies \bold{\frac{\cancel{e^{x + y}} + e^{x - y} - e^{-x + y} - \cancel{e^{-x - y}} - \cancel{e^{x + y}} + e^{x - y} - e^{y - x} + \cancel{e^{-x - y}}}{\cancel{e^{x + y}} + e^{x - y} + e^{y - x} + \cancel{e^{-x - y}} - \cancel{e^{x + y}} + e^{x - y} + e^{y - x} - \cancel{e^{-x - y}}}}

\implies \bold{\frac{2\{e^{x - y} - e^{-x + y}\}}{2\{e^{x - y} + e^{-x + y}\}}}

\implies \bold{\frac{e^{x - y} - e^{-x + y}}{e^{x - y} + e^{-x + y}} = tanh(x - y)}


I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions
Math, 7 months ago