Math, asked by deepaKanojiya8338, 1 year ago

Prove that : (cot^3 θ.sin^3θ)/(cos θ + sin θ)^2 + (tan^3 θ.cos^2 θ)/(cosθ + sin θ)^2

Answers

Answered by generalRd
0
plz give full question

its incomplete
Answered by Hana13
0

Step-by-step explanation:

LHS = \frac{\frac{cos^3A}{sin^3A} . sin^3A}{(cosA + sinA)^2} + \frac{\frac{sin^3A}{cos^3A} . cos^3A}{(cosA + sinA)^2}

= \frac{cos^3A + sin^3A}{(cosA + sinA)^2}

= \frac{(cosA + sinA)(cos^2A + sin^2A - cosAsinA)}{(cosA + sinA)(cosA + sinA)}

= \frac{cos^2A + sin^2A - cosAsinA}{cosA + sinA}

= \frac{1-cosA sinA}{cosA+sinA} ------------ (1)

RHS = \frac{cosecAsecA-1}{cosecA+secA}

= \frac{\frac{1}{sinA} . \frac{1}{cosA} -1 }{\frac{1}{sinA} + \frac{1}{cosA}}

= \frac{\frac{1}{sinAcosA}-1 }{\frac{cosA + sinA}{sinAcosA} }

= \frac{1-sinAcosA}{sinAcosA} . \frac{sinAcosA}{cosA+sinA}

= \frac{1-sinAcosA}{cosA+sinA}-------------- (2)

From (1) & (2)

LHS = RHS

Hence, proved.

Similar questions