Prove that: (cot A + sec B)2 – (tan B – cosec A)2 = 2(cot A . sec B + tan B. cosec A) . Hi, Answer this
Answers
Answered by
1
Answer:
LHS = (cotA + secB)^2 - (tanB - cosecA)2
by using (a+b)^2= a^2 + 2ab + b^2
&. (a-b)^2 = a^2 - 2ab + b^2
= cot^A + 2.cotA.secB + sec^2B - (tan^2B -
2tanB.cosecB + cosec^2A)
= cot^2A + 2cotA.secB + sec^2B - tan^2B +
2tanB.cosecB - cosec^2A
using identities cot^2A = cosec^2A - 1
&. sec^2A = tan^2A +1
= cosec^2A - 1 + 2cotA.secB + tan^2A +1 - tan^2B +
2tanB.cosecB - cosec^2A
= 2cotA.secB + 2tanB.cosecB
= 2 (cotA.secB + tanB.cosecB)
= RHS
hence proved
I hope this will help you..
plz follow me..☺️☺️☺️
Similar questions
Psychology,
2 months ago
Social Sciences,
2 months ago
English,
2 months ago
Math,
5 months ago
English,
5 months ago
Math,
10 months ago
Math,
10 months ago