Math, asked by mailtophshettyp631h7, 1 year ago

Prove that : cot θ – tan θ = 2cos2 θ -1/sin θ . cos θ .

Answers

Answered by sivaprasath
144
Solution:(Instead of θ,I use A).

_____________________________________________________________

Given:

To prove that:

           cot A - tan A =  \frac{2cosA^2-1}{sinAcosA}

_____________________________________________________________

Proof:

We know that,

tan A =  \frac{sin A}{cos A} ,

cot A =  \frac{cos A}{sin A}


LHS = cot A - tan A

=>  \frac{cos A}{sin A} -  \frac{sin A}{cos A}

=>  \frac{cos^2A - sin^2A}{sinAcosA}

We know that,

=> sin^2 A + cos^2A =1

=> sin^2 A = 1 - cos^2A

=> - sin^2A = cos^2A - 1

_______________________________

Hence,

=>  \frac{cos^2A +(- sin^2A)}{sinAcosA}

=>  \frac{cos^2A+ (cos^2A-1) }{sinA cosA}

=>  \frac{2cos^2A - 1}{sinAcosA}

=> RHS,

                 ∴ Hence proved

_____________________________________________________________

                                     Hope it Helps!!

=> Mark as Brainliest,.
Answered by kalpkawarat15
64
I have given the answer in a simple manner :)
Attachments:
Similar questions