Math, asked by guri10, 1 year ago

prove that cot2A = cot square A - 1 /2cotA

Answers

Answered by seem1512
96
I've used the formula of tan2a to prove the above que . u can also do without it
Attachments:
Answered by phillipinestest
33

Solution:

Given: \cot 2 A=\frac{\cot ^{2}(A-1)}{2 \cot A}   (Obtained from the formula)  

Now, \cot =\frac{1}{\tan }

Therefore,\cot 2 A=\frac{1}{\tan 2 A}

\cot 2 A=\frac{1}{\tan 2 A} (from the previous step)

\tan 2 A=\frac{2 \tan A}{1-\tan ^{2}(A)}  (from formula)  

\frac{1}{\tan 2 \mathrm{A}}=\frac{1-\tan ^{2}(\mathrm{A})}{2 \tan A}   (forming the reciprocal of the given values)

Substitute \tan A=\frac{1}{\cot A}

\cot 2 A=\frac{1-\left(\frac{1}{\cot ^{2} A}\right)}{2\left(\frac{1}{\cot A}\right)} ( by formula)

\bold{\begin{array}{l}{=\frac{\cot ^{2} A-1}{\cot ^{2} A} \times \frac{\cot A}{2}} \\ \\ {\cot 2 A=\frac{\cot ^{2} A-1}{2 \cot A}}\end{array}}

Hence Proved.

Similar questions