Math, asked by arjilaxmi, 10 months ago

prove that cotA/2+tanA/2=2cosecA​

Answers

Answered by AntonyLigin
13

Plz assume 'a' as 'A'

 \cot (\frac{a}{2} )+   \tan( \frac{a}{2} ) =  \frac{ \ \ \cos ( \frac{a}{2} ) }{ \sin( \frac{a}{2} ) }  +    \frac{ \sin( \frac{a}{2} ) }{ \cos  (\frac{a}{2})  }

 \:  \:  \:  \:  \:  =  \frac{ \cos^{2}  \frac{a}{2}   +  \sin^{2}  \frac{a}{2}  }{ \sin( \frac{a}{2}  )  \cos( \frac{a}{2} )  }

 \:  \:  \:  \:  \:  =  \frac{1}{ \sin( \frac{a}{2} ) \cos( \frac{a}{2} )  }

 \:  \:  \:  \:  \:  =  \frac{2}{2}  \times  \frac{1}{ \sin( \frac{a}{2} )  \cos( \frac{a}{2} ) }

 \:  \:  \:  \:  \:  =  \frac{2}{2 \sin( \frac{a}{2} )  \cos( \frac{a}{2} ) }

 \:  \:  \:  \:  \:  =  \frac{2}{ \sin2( \frac{a}{2} ) }  \:  \:  \:  \:  \:  \:  \:  \:( since \: 2 \sin(a )  \cos(a)  =  \sin2(a) )

 \:  \:  \:  \:  \:  =  \frac{2}{ \sin(a) }

 \:  \:  \:  \:  \:  = 2 \ \cosec (a)

Hence proved.plz give thanks for me

Similar questions