Math, asked by Apans2haagDip, 1 year ago

Prove that   cotA + cot(60+A) - cot(60-A) = 3cot3A .

Answers

Answered by smrutibhanja32
41
hope this is help full
Attachments:
Answered by pinquancaro
55

Answer and Explanation:

To prove : \cot A+\cot (60+A)-\cot(60-A)=3\cot 3A

Proof :

Taking LHS,

LHS=\cot A+\cot (60+A)-\cot(60-A)

Write, \cot A=\frac{1}{\tan A}

LHS=\frac{1}{\tan A}+\frac{1}{\tan (60+A)}-\frac{1}{\tan (60-A)}

Applying formula, \tan (A\pm B)=\frac{\tan A\pm \tan B}{1\mp \tan A\tan B}

LHS=\frac{1}{\tan A}+\frac{1-\tan 60\tan A}{\tan 60+\tan A}-\frac{1+\tan 60\tan A}{\tan 60-\tan A}

LHS=\frac{1}{\tan A}+\frac{1-\sqrt3\tan A}{\sqrt3+\tan A}-\frac{1+\sqrt3\tan A}{\sqrt3-\tan A}

LHS=\frac{1}{\tan A}+\frac{(1-\sqrt3\tan A)(\sqrt3-\tan A)-(1+\sqrt3\tan A)(\sqrt3+\tan A)}{(\sqrt3+\tan A)(\sqrt3-\tan A)}

LHS=\frac{1}{\tan A}+\frac{-8\tan A}{3-\tan^2 A}

LHS=\frac{3-\tan^2 A-8\tan^2 A}{(3-\tan^2 A)(\tan A)}

LHS=\frac{3(1-3\tan^2 A)}{(3-\tan^2 A)(\tan A)}

LHS=\frac{3}{\tan 3A}

LHS=3\cot 3A

LHS=RHS

Hence Proved.

Similar questions