Math, asked by AAA923, 1 year ago

Prove that in triangle ABC,
acosA+bcosB+ccosC=2asinBsinC​

Answers

Answered by spandanlaha01
3
HEY MATE, HERE IS YOUR ANSWER...

We know     a / sin A  =  b / sin B  = c / sin C.
                   b = a cos C + c Cos A
                   c = a Cos B + b cos A

LHS = a cos A + (a cos C + c cos A) cos B + (a cos B + b Cos A) cos C
        = a cos A + cos A (c cos B + b Cos C) + 2 a Cos C Cos B 
        = a cos A  + cos A * a + 2 a cos C cos B
        = 2a [cos A + Cos C Cos B]
        = 2 a [ cos (π-B-C) + cos C cos B]
        = 2 a [- cos (B+C) + cos C cos B]
        = 2 a Sin B sin C

HOPE IT HELPS

"PLEASE MARK AS BRAINLIST ANSWER"

AAA923: how, b=acosC+ccosA
Similar questions