Math, asked by Khrist, 11 months ago

Prove that log14/15+log28/27+log405/196=log2

Answers

Answered by pulakmath007
10

SOLUTION

TO PROVE

 \displaystyle \sf{ log \bigg( \frac{14}{15}  \bigg) + log \bigg( \frac{28}{27}  \bigg) +log \bigg( \frac{405}{196}  \bigg)  =  log(2)  }

FORMULA TO BE IMPLEMENTED

We are aware of the formula on logarithm that

 \sf{1.  \:  \: \:  log( {a}^{n} ) = n log(a)  }

 \sf{2. \:  \:  log(ab) =  log(a)   +  log(b) }

 \displaystyle \sf{3. \:  \:  log \bigg( \frac{a}{b}  \bigg)  =  log(a) -  log(b)  }

 \sf{4. \:  \:   log_{a}(a)   = 1}

EVALUATION

LHS

 \displaystyle \sf{  = log \bigg( \frac{14}{15}  \bigg) + log \bigg( \frac{28}{27}  \bigg) +log \bigg( \frac{405}{196}  \bigg)   }

 \displaystyle \sf{  = log \bigg( \frac{14}{15}  \times  \frac{28}{27}  \bigg) +log \bigg( \frac{405}{196}  \bigg)   }

 \displaystyle \sf{  = log \bigg( \frac{14}{15}  \times  \frac{28}{27}   \times  \frac{405}{196}  \bigg)   }

 \displaystyle \sf{  = log \bigg( \frac{1}{15}  \times  \frac{28}{1}   \times  \frac{15}{14}  \bigg)   }

 \displaystyle \sf{  = log \bigg( \frac{28}{15}     \times  \frac{15}{14}  \bigg)   }

 \displaystyle \sf{  = log \bigg( \frac{2}{1}\bigg)   }

 \displaystyle \sf{  = log \:  2  }

= RHS

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If log (0.0007392)=-3.1313 , then find log(73.92)

https://brainly.in/question/21121422

2.If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

Similar questions