Math, asked by ap275230, 9 months ago

Prove that question ​

Attachments:

Answers

Answered by Anonymous
4

Question :-

Prove that √[ (secθ + 1)/(secθ - 1) ] = 1/(cosecθ - cotθ)

Solution :-

 \rm  \sqrt{ \dfrac{sec \theta + 1}{sec \theta - 1} }  =  \dfrac{1}{cosec \theta - cot \theta}

Consider LHS

 \rm  \sqrt{ \dfrac{sec \theta + 1}{sec \theta - 1} }

Multiplying both numerator and denominator with √(secθ - 1)

 \rm  =  \sqrt{ \dfrac{sec \theta + 1}{sec \theta - 1} \times  \dfrac{sec \theta - 1}{sec \theta - 1}  }

 \rm  =  \sqrt{ \dfrac{(sec \theta + 1)(sec \theta - 1)}{(sec \theta - 1)^{2} } }

 \rm  =  \sqrt{ \dfrac{sec^{2}  \theta - 1^{2} }{(sec \theta - 1)^{2} } }

 \rm  =  \sqrt{ \dfrac{sec^{2}  \theta - 1 }{(sec \theta - 1)^{2} } }

 \rm  =  \sqrt{ \dfrac{tan^{2}  \theta}{(sec \theta - 1)^{2} } }

[ Because sec²θ - 1 = tan²θ ]

 \rm  =  \sqrt{  \bigg(\dfrac{tan \theta}{sec \theta - 1 }  \bigg) ^{2} }

 \rm  = \dfrac{tan \theta}{sec \theta - 1 }

Dividing both numerator and denominator with tanθ

 \rm  = \dfrac{ \dfrac{tan \theta}{tan \theta}}{ \dfrac{ sec \theta}{tan \theta} -  \dfrac{1}{tan \theta}  }

 \rm  = \dfrac{ 1}{  \dfrac{1}{sin \theta} -  cot \theta }

 \rm  = \dfrac{ 1}{ cosec\theta-  cot \theta }

= RHS

Hence proved.

Answered by RvChaudharY50
160

Question :-

Prove that √[ (secθ + 1)/(secθ - 1) ] = 1/(cosecθ - cotθ)

__________________________

\Large\bold\star\underline{\underline\textbf{Solution(1)}}

\rm \sqrt{ \dfrac{sec \theta + 1}{sec \theta - 1} } = \dfrac{1}{cosec \theta - cot \theta}  \:

Solving LHS First :-----

\rm \sqrt{ \dfrac{sec \theta + 1}{sec \theta - 1} }  \:

Rationalizing the denominator we get,,,

\rm = \sqrt{ \dfrac{sec \theta + 1}{sec \theta - 1} \times \dfrac{sec \theta - 1}{sec \theta - 1} } \\  \\  =  \sqrt{ \frac{ {sec}^{2}\theta \:  - 1 }{(sec \theta - 1)^{2} } }

[ Now since sec²θ - 1 = tan²θ ]

we get,,

  = \sqrt{ \frac{ {tan}^{2}\theta}{(sec \theta - 1)^{2} } }  \\  \\ =   \frac{tan \theta}{sec \theta - 1}

Now dividing both denominator and denominator with tanθ we get,

and using , secθ = 1/cosθ and tanθ = sinθ/cosθ and also

1/tanθ = cotθ we get,,,,

Putting all these we get,,,

 =  \frac{\frac{tan\theta}{tan\theta}}{ \frac{sec \theta}{tan\theta}  -  \frac{1}{tan \theta} }  \\  \\  =  \frac{1}{  \frac{1}{cos \theta} \times  \frac{cos \theta}{sin \theta} - cot \theta  }  \\  \\  =  \frac{1}{cosec \theta - cot \theta}

\red{\textbf{= RHS (Proved)}} \:

_______________________________

\Large\bold\star\underline{\underline\textbf{Solution(2)}}

\rm \sqrt{ \dfrac{sec \theta + 1}{sec \theta - 1} }  \\  \\  =  \sqrt{ \frac{1 + cos\theta}{1 - cos \theta} }  \\  \\   =  \sqrt{\frac{1 + cos\theta}{1 - cos \theta}  \:  \times \frac{1  +  cos\theta}{1  +  cos \theta} } \\  \\  =  \sqrt{ \frac{(1 + cos^{2}  \theta)}{1 - cos ^{2} \theta } }  \\  \\  =  \frac{1 + cos \theta}{sin \theta}  \:

= 1/sinθ + cosθ/sinθ

= cosecθ + cotθ

Now we know that,,

cosec²θ - cot²θ = 1

or,

( cosecθ + cotθ )(cosecθ - cotθ) = 1

so,,,,

→ we can say that,,,

cosecθ + cotθ \:  =  \frac{1}{cosecθ  -  cotθ}

\green{\textbf{= RHS (Proved)}}

_______________________________

\large\underline\textbf{Hope it Helps You.}

Similar questions