Math, asked by 123dev789, 9 months ago

prove that root 2 is an irrational no​

Answers

Answered by karthikeya4158
0

Step-by-step explanation:

any number having root is an irrational number

like√2,√3 but not √4 because root 4 is equal to 2

Answered by paramitaghosh27
0

Answer :

A proof that the square root of 2 is irrational. Let's suppose √2 is a rational number. Then we can write it √2 = a/b where a, b are whole numbers, b not zero. We additionally assume that this a/b is simplified to lowest terms, since that can obviously be done with any fraction.

Step-by-step explanation:

Let √2 be a rational number 

Therefore, √2= p/q  [ p and q are in their least terms i.e., HCF of (p,q)=1 and q ≠ 0

On squaring both sides, we get 

                  p²= 2q²                                                                                    ...(1)

Clearly, 2 is a factor of 2q²

⇒ 2 is a factor of p²                                                                    [since, 2q²=p²]

⇒ 2 is a factor of p

 Let p =2 m for all m ( where  m is a positive integer)

Squaring both sides, we get 

           p²= 4 m²                                                                                          ...(2)

From (1) and (2), we get 

          2q² = 4m²      ⇒      q²= 2m²

Clearly, 2 is a factor of 2m²

⇒       2 is a factor of q²                                                      [since, q² = 2m²]

⇒       2 is a factor of q 

Thus, we see that both p and q have common factor 2 which is a contradiction that H.C.F. of (p,q)= 1

    Therefore, Our supposition is wrong

Hence √2 is not a rational number i.e., irrational number.

Please mark me the brainliest. Hope it helps.

Thanks.

Similar questions