Math, asked by Deepeshmunna, 4 months ago

prove that : root of 1+sin2theta sec2theta/1+cos2theta cosec2theta=tantheta​

Attachments:

Answers

Answered by Ataraxia
11

To Prove :-

\sf \sqrt{\dfrac{1+sin^2 \theta sec^2 \theta }{1+cos^2 \theta cosec^2 \theta}} = tan \theta

Solution :-

\sf L.H.S = \sqrt{\dfrac{1+sin^2 \theta sec^2 \theta }{1+cos^2 \theta cosec ^2\theta }}

\bullet \bf \ sec \theta = \dfrac{1}{cos \theta } \\\\\bullet \ cosec \theta = \dfrac{1}{sin \theta }

       = \sf \sqrt{\dfrac{1+ sin^2 \theta \times \dfrac{1}{cos^2 \theta }}{1+cos^2 \theta \times \dfrac{1}{sin^2 \theta }}} \\\\= \sqrt{\dfrac{1+ \dfrac{sin^2 \theta }{cos^2 \theta }}{1+ \dfrac{cos^2 \theta }{sin^2 \theta }}}

\bullet \bf \ tan \theta = \dfrac{sin \theta }{cos \theta } \\\\\bullet \ cot \theta = \dfrac{cos \theta }{sin \theta }

        = \sf \sqrt{\dfrac{1+tan^2 \theta }{1+cot^2 \theta }}

\bullet \bf \ 1+tan^2 \theta = sec^2 \theta \\\\ \bullet 1+cot^2 \theta = cosec^2 \theta

        = \sf \sqrt{\dfrac{sec^2 \theta }{cosec^2 \theta }} \\\\= \sqrt{\dfrac{1}{cos^2 \theta } \times sin^2 \theta } \\\\= \sqrt{\dfrac{sin^2 \theta }{cos^2 \theta }} \\\\= \sqrt{tan^2 \theta }  \\\\= tan \theta \\\\=R.H.S

Hence proved.


pulakmath007: Superb
Similar questions