Math, asked by MrUnknown9851, 4 months ago

Prove that :-

sec θ ( 1 - sin θ ) ( sec θ + tan θ ) = 1​

Attachments:

Answers

Answered by Anonymous
58

L.H.S =

\bf \implies{ sec \: θ ( 1 - sin \: θ ) ( sec \: θ + tan \: θ ) = 1}  \:  \: \: \: \\  \\  \bf \implies =  \dfrac {1}{cos \: θ} \:  \: (1 - sin \: θ)  \: \times  \: ( \dfrac {1}{cos \: θ} \:  +  \:  \dfrac{sin \: θ}{cos \:θ})

 \\ \implies \bf =  \dfrac{(1 - sin \: θ)}{cos \: θ} \:  \: \bf \dfrac{(1  + sin \: θ)}{cos \: θ}

 \\ \bf \implies = \dfrac{1 -  {sin}^{2} \: θ }{ {cos}^{2}  \: θ} \:   \:  \: \: \: \: \: \: .....[  \: ∵ (a+b) \: (a-b)= \:  {a}^{2} -  {b}^{2} \: ]

 \\ \bf \implies  = \dfrac{ {cos}^{2} \: θ }{ {cos}^{2} \: θ} \:  \:  \:  \:  \:  \: \: \:  \:  \:  \: \: \large \binom{ { \: ∵ \: sin}^{2} \: θ  +  {cos}^{2}  \: θ = 1 \: }{ \: ∵ \: 1 -  {sin}^{2} \: θ =  {cos}^{2} \: θ \: }

 \\ \bf \implies = 1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\ \\ \bf \implies = R.H.S

 \\ \bf{ \: ∴ \: sec \: θ ( 1 - sin \: θ ) \: ( sec \: θ + tan \: θ ) = 1}

Answered by ramesh015
0

Answer:

L.H.S. = sec θ (1 – sin θ) (sec θ + tan θ) = 1 = R.H.S. ∴ sec θ (1 – sin θ) (sec θ + tan θ) = 1 ii. L.H.S. = (sec θ + tan θ) (1 – sin θ) = cos θ = R.H.S. ∴ (sec θ + tan θ) (1 – sin θ) = cos θRead more on Sarthaks.com - https://www.sarthaks.com/857818/prove-the-following-i-sec-1-sin-sec-tan-1-ii-sec-tan-1-sin-cos

sec θ ( 1 - sin θ ) ( sec θ + tan θ ) =

Similar questions