Math, asked by mokshsadana, 10 months ago

Prove that sec A (1- Sin A) (Sec A + tan A)
=1

Answers

Answered by Anonymous
8

\huge\mathfrak\blue{Answer:}

Given:

  • We have been given a trigonometric Function
  • \sf{sec \: A ( 1 - sin \: A )( sec \: A + tan \: A ) = 1 }

To Prove:

  • We have to prove that
  • \sf{sec \: A ( 1 - sin \: A )( sec \: A + tan \: A ) = 1}

Solution:

We have to prove that

\sf{sec \: A ( 1 - sin \: A )( sec \: A + tan \: A ) = 1}

________________________________

\underline{\large\sf{\orange{Taking \: LHS}}}

\implies \sf{sec \: A ( 1 - sin \: A )( sec \: A + tan \: A) } \\ \\

Converting all in terms of sine and cosine

\implies \sf{sec \: A ( 1 - sin \: A )( sec \: A + tan \: A )} \\ \\

\implies \sf{\dfrac{1}{cos \: A} ( 1 - sin \: A )( \dfrac{1}{cos \: A}+ \dfrac{sin \: A }{cos \: A}) } \\ \\

Taking LCM

\implies \sf{\dfrac{1}{cos \: A} ( 1 - sin \: A )( \dfrac{1 + sin \: A}{cos \: A}) } \\ \\

\implies \sf{\dfrac{1}{cos^2 \: A } \times ( 1 - sin \: A )( 1 + sin \: A) } \\ \\

_____________________________

Using algebric identities

\boxed{\sf{\pink{ (a-b)(a+b) = a^2 - b^2 }}} \\ \\

\implies \sf{\dfrac{1}{cos^2 A} ( 1 - sin^2 \: A )} \\ \\

\boxed{\sf{\green{1 - sin^2 \: A = cos^2 \: A }}} \\ \\

\implies \sf{\dfrac{1}{cos^2 A} \times ( cos^2 \: A )} \\ \\

\implies \sf{\dfrac{cos^2 \: A}{cos^2 A}} \\ \\

\implies \sf{\cancel{\dfrac{cos^2 \: A}{cos^2 A}}} \\ \\

\implies \sf{1 \qquad ( RHS ) }

_______________________________

\huge\sf{\red{H}\orange{e}\green{n}\pink{c}\blue{e} \: \purple{P} \red{r}\orange{o}\green{v}\pink{e}\blue{d} \: \red{ !!! }} \\

\large\boxed{\sf{\red{sec \: A ( 1 - sin \: A )( sec \: A + tan \: A ) = 1}}}

__________________________________

Similar questions