prove that
(sin∅^4-cos^4∅ = 1) cosec^2∅=2
Answers
Answered by
2
sin⁴∅ - cos⁴∅ = 1
(sin²∅ - cos²∅ )( sin²∅+ cos²∅ ) = 1
we know that ,
sin²∅ + cos²∅ = 1
so,
(sin²∅ - cos²∅).1 = 1 form above eqn
sin²∅ - cos²∅ = 1
sin²∅ -(1-sin²∅ ) = 1
2sin²∅ = 2
sin²∅ = 1
so, 1/cosec²∅ = 1
cosec² ∅ = 1
here some typing mistake
I think questions is
sin⁴∅ - cos⁴∅ = 1
then ,prove that cosec²∅ = 1
plz mention clearly , what you want
(sin²∅ - cos²∅ )( sin²∅+ cos²∅ ) = 1
we know that ,
sin²∅ + cos²∅ = 1
so,
(sin²∅ - cos²∅).1 = 1 form above eqn
sin²∅ - cos²∅ = 1
sin²∅ -(1-sin²∅ ) = 1
2sin²∅ = 2
sin²∅ = 1
so, 1/cosec²∅ = 1
cosec² ∅ = 1
here some typing mistake
I think questions is
sin⁴∅ - cos⁴∅ = 1
then ,prove that cosec²∅ = 1
plz mention clearly , what you want
Similar questions