prove that
Sin (45+theta ) - Sin (45-theta = root 2sintheta
Answers
Answered by
4
Step-by-step explanation:
Form a general relation for sin(A + B) - sin(A - B):
=> {sinA.cosB + cosA.sinB} - {sinA.cosB - cosA.sinB}
=> sinA.cosB + cosA.sinB - sinA.cosB + cosA.sinB}
=> 2cosA.sinB
In the question, A = 45° & B = theta
So,
sin(45° + theta) - sin(45° - theta) is:
=> 2cos45°.sin(theta)
=> 2(1/√2).sin(theta)
=> √2 sin(theta) proved
Similar questions