Math, asked by PragyaTbia, 1 year ago

Prove that sin 750° cos 480° + cos 120° cos 60° = \frac{-1}{2}

Answers

Answered by mysticd
62
Solution :

i ) sin750°

= sin( 2×360° + 30° )

= sin 30°

= 1/2

ii ) cos 480°

= cos ( 360° + 120° )

= cos 120°

= cos ( 180 - 60° )

= - cos 60°

= -1/2

iii ) cos 120°

= cos ( 180° - 60° )

= - cos 60°

= -1/2

iv ) cos 60° = 1/2

Now ,

LHS =sin750°cos480°+cos 120°cos 60°

= ( 1/2 )( -1/2 ) + ( -1/2 )( 1/2 )

= -1/4 - 1/4

= -2/4

= -1/2

= RHS

•••••
Answered by rebbalavanya7
7

Step-by-step explanation:

 \ =  \\sin(750)  \times  \cos(480)  +  \cos(120)  \times  \cos(60)  \\   \\  =  \sin(360 + 390)  \times  \cos(360 + 120)  +  \cos(360 + 120)  \times  \cos(60)   \\  =  \sin(390)  \times  \cos(120)  -  \cos(60)  \times  \cos(60)  \\  \sin(360 + 30)  \times  \cos(180 - 60)   -  \cos(60)  \times  \cos(60)  \\  \sin(30)  \times  -  \cos(60)  -  \cos(60)  \times  \cos(60)  \\  = 1 \div 2 \times  - 1 \div 2 - 1 \div 2 \times 1 \div 2 \\  =  - 1 \div 4 - 1 \div 4  \\  =  - 1 - 1 \div 4 \\  =  - 2 \div 4 \\  =  - 1 \div 4

Similar questions