Math, asked by msvp11bff, 4 months ago

Prove that sin A + cos'A=1.​

Answers

Answered by ved272822
1

Answer:

ANSWER

sinA+cosA−1

sinA−cosA+1

=

sinA−(1−cosA)

sinA+(1−cosA)

=

2sin

2

A

cos

2

A

−2sin

2

2

A

2sin

2

A

cos

2

A

+2sin

2

2

A

=

cos

2

A

−sin

2

A

cos

2

A

+sin

2

A

=

cot

2

A

+1

cot

2

A

−1

=cot(

4

π

2

A

)

=

sin(

4

π

2

A

)×sin(

4

π

2

A

)

cos(

4

π

2

A

)×sin(

4

π

2

A

)

=

1−cos(

2

π

−A)

sin(

2

π

−A)

=

1−sinA

cosA

=

secA−tanA

1

Answered by Anonymous
4

ᴛʜᴇʀᴇ ɪs ᴀɴ ᴇʀʀᴏʀ ɪɴ ᴛʜᴇ ǫᴜᴇsᴛɪᴏɴ

sɪɴᴀ + ᴄᴏsᴀ ≠ 1

ᴡᴇ ʜᴀᴠᴇ ᴀ ᴛʀɪɢɴᴏᴍᴇᴛʀɪᴄ ɪᴅᴇɴᴛɪᴛʏ,

ᴡʜɪᴄʜ ɪs,

sɪɴ²ᴀ + ᴄᴏs²ᴀ = 1

Similar questions