prove that (sin A+cosec A)^2 + (cos A+secA)^2 =7+ tan^2 A + cot^2A.
Answers
Answered by
1
Step-by-step explanation:
hope this helps you please mark as brainliest
Attachments:
Answered by
2
Using Properties :-
Sin²A + Cos²A = 1
Cosec²A = 1 + Cot²A
Sec²A = 1 + tan²A
Solution :-
(SinA + CosecA)² + (CosA + SecA)²
=> (Sin²A + Cosec²A + 2SinA*CosecA) +
(Cos²A + Sec²A + 2CosA*SecA)
=> (Sin²A + Cosec²A + 2 + Cos²A + Sec²A + 2)
=> ( Sin²A + Cos²A + Cose²A + Sec²A + 4 )
=> 1 + (1 + Cot²A) + (1 + tan²A) + 4
=> 7 + tan²A + Cot²A
Hence Proof
Similar questions